Jd 98X =YL

Buidepsiul pue ‘ubisep ‘ebenbue| A|quissse

fifth
edition

Prentice Hall

Dec Hex Bin

4 4

ORG

00000100

’

FIVE

OTHER COMMANDS
Conditions
Strings

etc.

The x86 PC

assembly language,
design, and interfacing
fifth edition

MUHAMMAD ALI MAZIDI
JANICE GILLISPIE MAZIDI
DANNY CAUSEY

Adds the contents of AL to BX and uses the resulting offset to point to an
entry in an 8 bit translate table.

This table contains values that are substituted for the original value in AL.
The byte in the table entry pointed to by BX+AL is moved to AL.

XLAT [tablename] ; optional because table is assumed at BX

Table db ‘'0123456789ABCDEF’

Mov AL,0A: index value
Mov bx,offset table
Xlat; AL=41h, or ‘A

The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'Qe Hall - Upper Saddle River, NJ 07458

Data Transfer Instructions - XCHG

XCHG Exchange | XCHG D,S | (Dest) <> None
(Source)

Destination Source

Reg16 Reg16

Memory Register

Register Register

Register Memory

Example: XCHG [1234h], BX

_ The x86 PC
PEARSON [y Iy Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
: = By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren"ge Hall - Upper Saddle River, NJ 07458

Data Transfer Instructions — LEA, LDS, LES

LEA Load Effective Address | LEA Reg16,EA EA 2> (Reg16) None

LDS Load Register and DS LDS Reg16, MEM32 (Mem32) > (Reg16) | None

(Mem32 +2) >
(DS)

LES Load Register and ES LES Reg16, MEM32 (Mem32) > (Reg16) | None

(Mem32 +2) >
(ES)

_ The x86 PC
PEARSOMN Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren‘gfe Hall - Upper Saddle River, NJ 07458

Examples for LEA, 1LDS, LES

DATAX DW 1000H

DATAY DW 5000H

.CODE

LEA SI, DATAX

MOV DI, OFFSET DATAY; THIS IS MORE EFFICIENT

LEA BX,[DI]; IS THE SAME AS...
MOV BX,DI; THIS JUST TAKES LESS CYCLES.

LEA BX,DI; INVALID!

LDS BX, [DI];

1000

1000 3000

The x86 PC
F EARSO N Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Educatlon, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prenige Hall - Upper Saddle River, NJ 07458

Flag Control Instructions

Bulk manipulation
of the flags

« LAHF LoadAH from flags (AH) « (Flags)
« SAHF Store AH into flags (Flags) < (AH) }

— Flags affected: SF, ZF, AF, PF, CF
« CLC Clear Carry Flag (CF) « 0 N
« STC Set Carry Flag (CF) « 1
« CLI Clear Interrupt Flag (IF) < O >~
« STl Set interrupt flag (IF) « 1 Individual manipulation of
« Example (try with debug) ~ theflags

LAHF

MOV AX,0000

ADD AX,00

SAHF

— Check the flag changes!

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prenr'Ge Hall - Upper Saddle River, NJ 07458

 Unconditional |

Part 1

IMP AA Unconditional jump

vs conditional

Part 11

Jump jm

KAXKKK ptee——

instruction

Locations skipped due
1o jump

Next instruction
executed

Par [II
(a)
Part I
Jec AA L f:andhional jump
instruction
t— K AAN Next ir!struction executed
if condition not met
Locations skipped
if jump taken
Part 11
Next instruction
*— AA HXHKKXN t———— executed if
condition met
Part 111

(b}

e The x86 PC
]:j_E ARS U_N Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prenffe Hall - Upper Saddle River, NJ 07458

Conditional Jump

These flags are based on general comparison

Mnemonic Description Flags/Registers
JZ Jump if ZERO ZF =1
JIE Jump if EQUAL ZF =1
JNZ Jump if NOT ZERO ZF =0
JNE Jump if NOT EQUAL ZF =0
JC Jump if CARRY CF =1
JNC Jump if NO CARRY CF=0

_ The x86 PC
PEARSON Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
- & By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentfge Hall - Upper Saddle River, NJ 07458

Conditonal Jump based on flags

Mnemonic Description Flags/Registers
JS JUMP IF SIGN (NEGATIVE) SF=1
JNS JUMP IF NOT SIGN (POSITIVE) SF=0
JO JUMP IF OVERFLOW OF =1
JNO JUMP IF NO OVERFLOW OF =0
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prenﬁge Hall - Upper Saddle River, NJ 07458

Fj_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Jump Based on Unsigned Comparison

These flags are based on unsigned comparison

Mnemonic Description Flags/Registers

JA Jump if above op1>0p2 CF=0andZF =0

JNBE Jump if not below or equal CF=0andZF =0
op1 not <= op2

JAE Jump if above or equal CF=0
op1>=op2

JNB Jump if not below CF=0
op1 not <opp2

JB Jump if below op1<op2 CF =1

JNAE Jump if not above nor equal CF =1
op1< op2

JBE Jump if below or equal CF=1o0orZF =1
op1 <= op2

JNA Jump if not above CF=1orZF =1
op1 <= op2

i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentair:g-lall - Upper Saddle River, NJ 07458

Jump Based on Signed Comparison

These flags are based on signed comparison

Mnemonic Description Flags/Registers

JG Jump if GREATER op1>0p2 SF=OFAND ZF =0

JGE Jump if GREATER THAN or equal op1>=0p2 SF = OF

JL Jump if LESS THAN op1<op2 SF <> OF

JLE Jump if LESS THAN or equal op1 <= op2 ZF =1 OR SF <> OF
The x86 PC

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentiﬁ Hall - Upper Saddle River, NJ 07458

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Control Transfer Instructions

(conditional)

* |tis often necessary to transfer the program
execution.

— Short

A special form of the direct jump: “short jump”
« All conditional jumps are short jumps
« Used whenever target address is in range +127 or —128 (single

byte)

* Instead of specifying the address a relative offset is used.

The x86 PC

Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrentqegHall - Upper Saddle River, NJ 07458

*Conditional Jump is a two byte instruction.

’Ina jump backward the second byte is the 2’s complement of the
displacement value.

*To calculate the target the second byte is added to the IP of the instruction
after the jump.

Ex:
— " 000D ADD AL,[BX]
000F INC BX)
0010 DEC CX ~—— Short Jump 0013 + FA(-6)
— 0011 JNZFA -
0013
PEARSON Zfef,fflf LC"”g”“ge’ Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentqe@fall - Upper Saddle River, NJ 07458

SJ Example

rnmmm NEANG

¢ry Created with Hyperanap-Dk g |

To avaid this stamp, buy 3 license at
hitp: i hyperionics.com

- |:1

Crhscg Trne

—I|I|
16EF
]L.FF:

5 A

R
g &l

.model small

.stack 100h

.data

org 0010

messagel db "You

org 50

message2 db "You

.code

main proc

mov
mov
mov
int

now have a small letter entered !",0dh,0ah,'$'

have NON small letters ",0dh,Oah,'$'

ax,@data
ds, ax
ah,00h
16h

—yrrr—]

Cmp

al,7ah

b Ja_next |

mov
mov
mov
int
int

ah,0%

dx,offset messagel
ah,0%

21h

20h

next: mov dx,offset message2

mov
int
mov
int
main endp
end main

ah, 0%
21h
ax,4C00h
21h

Frassssssessassassassassasanns

A Simple Example Program finds the sum

« Write a program that adds 5 bytes of data and saves the result. The
data should be the following numbers: 25,12,15,10,11

.model small Again: add al, [bx]
.stack 100h t inc bx
.data dec cx
Data in DB 25,12,15,10,11 jnz Again
Sum DB ? mov sum,al
.code mov ah,4Ch
main proc far INT 21H
mov ax, @Data Main endp
mov ds,ax end main
mov cx,05h
mov bx,offset data in
mov al,0
PEARSON Zjﬁgf Lcanguage’ Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentif:sHall - Upper Saddle River, NJ 07458

Example Output

e Run Data Options cCalls Windows Help
l—[3}— sourcel CS:IP EX1.asm | T ¥
.mode| sma]| AX
.stack 100h BX
.data H X
Data_in DB 25,0215, 10 51 H | DX
sum DB 7 H| 'SP
.code H | BP
main proc far 3| ST
mov ax, @bata H| DI
1I.'.'-SB 0000 B85C1D MOV ’ H| DS
9: mov ds,ax H| ES
1D5B: 0003 8ED8& MOV S 1| 55
r : IP
—[5] memoryl b O0x1D5C:0x0 FL
1D5C: 0000 19 0C OF] Iu-o%.4L=! |9
' v, BOofINBO84e. ... | [NV UP
1p5C: ﬂDlA 00 43 56 01 00 00 00 OO0 00 OO0 ..2.CVa@ ZR NA

D
oLl

mmwmumwimimmimmmniminimin-=—s

p-2
Process 0x1D4B terminated normally (2)
>

<FE—Trace> <F I-Step> <F -Gu> <F3=S1 Fmt» <Sh+F3=M1 Fmt>

By Muhammad A11 Ma21d1 Jamce Glllesple Ma21d1 and Danny Causey “Pearson Pr enthGHall Uppe1 saddle R1ve1 NJ 07458

Unconditional Jump

/
** Short Jump: jmp short L1 (8 bit)
/
** Near Jump: jmp near ptr Label

If the control is transferred to a memory location within the current code segment
(intrasegment), it is NEAR. IP is updated and CS remains the same

>The displacement (16 bit) is added to the IP of the instruction following jump instruction.
The displacement can be in the range of —32,768 to 32,768.

>The target address can be register indirect, or assigned by the label.

>Register indirect JMP: the target address is the contents of two memory locations
pointed at by the register.

>Ex: JMP [SI] will replace the IP with the contents of the memory locations pointed by
DS:Dl and DS:DI+1 or JMP [BP + Sl + 1000] in SS

/
**Far Jump: If the control is transferred to a memory location outside the current

segment. Control is passing outside the current segment both CS and IP have to be updated
to the new values. ex: JMP FAR PTR label = EA 00 10 00 20
jmp far ptr Label ; this is a jump out of the current segment.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentﬂir:VHall - Upper Saddle River, NJ 07458

0B20:1003

u 1000

B20:1000 E9FDO1 IMP 1200
0B20:1003 2008B AND [BP+DI],CL

Jumps to the specified IP with +/- 32K distance from the next instruction following
the jmp instruction

The x86 PC
E" EARSO N Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentqc@Hall - Upper Saddle River, NJ 07458

1000 Jmp 3000:1200

DBZ20:1000 EA00120030 JMP 3000:1200
B20:1005 FF750B PUSH [DI+OB]

Jumps to the specified CS:IP

_ The x86 PC
E" EARSO N Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentqr:gHall - Upper Saddle River, NJ 07458

Nested Loops

single Loop Nested Loops

MOV CX,A
MOV CX,A OUTER: I\P/ILé\?/HCC)J(X99 <
BACK: ... ,

INNER: NOP]
LOOPBACK ~ —— _
LOOP INNER
POP CX
LOOP OUTER

How many times will

the loop execute,
if JCXZ wasn't there MOV CX,0
Q:b DLOOP: JCXZ SKIP ;guardin
- BACK: MUL AX,2H <
ADD AX,05H
LOOP BACK
- SKIP: INC AX; if CX=0

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'%g{all - Upper Saddle River, NJ 07458

Loop and Loop Handling Instructions

Mnemonic

Meaning Format . Operation

LOOP : Loop LOOP Short-lubel CX)={CX1 =1

Jump is initiated to location delined by
short-label if (CX) o 0; otherwise,
enecule next sequenial instruciion

LOOPE/LOOPZ | Loop while equal/ LOOPE/LOOPZ Short-label [ICH) (UK = | '

. |

loop while zero ! Jump o location defined by short-lubel
[WICX)# 0and (ZF) = |; atherwise,

execule nexl sequentlad Instruction

mif Loop while not equal! | LOOPNE/LOOPNZ Short-label | (CX) = {CX) = |
whi

M loap while nat zero Jump 1o location defined by short-lahel
W {CX) o 0 and (ZF) = 0; otherwise,

exccile nex) sequential inst ruction

Figure 6-28 Loop instructions.
INXIW /bl Language, Desian, and Interfacing ©2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Pren'Qe‘ Hall - Upper Saddle River, NJ 07458

MOV CX,COUNT

Load count for the number of repeats

NEXT:
. = Body of routine that is repeated
. #
LOOP NEXT Loop back to label NEXT if count not zero

ta)

MOV AX.DATASEGADDR

MOV DS.AX

MOV SLBLKIADDR

MOV DLBLKZADDR

MOV CX.N

NXTPT: MOV AH,[5I)

MOV [DILAH

INC 51

INC Dl

LOOP NXTPT

HLT
{b)

The x86 PC © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

]:j_E ARS U_f_\l Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

Pearson Pren%?—lall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

BCD number system

Digit BCD
« BCD stands for binary coded 0 0000
decimal. 1 0001
— Needed because we use the digits 0 2 0010
to 9 for numbers in everyday life. 3 0011
— Computer literature features 4 0100
two terms for BCD numbers: 5 0101
« Unpacked BCD. 6 0110
« Packed BCD. 7 0111
8 1000
9 1001
PEARSON Z’;fe’;‘ff,f Lcanguage,) e ©2010,2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD unpacked wvs. packed

* |n unpacked BCD, the lower 4 bits of the number

represent the BCD number.

— The rest of the bits are 0.
« "0000 1001" and "0000 0101" are unpacked BCD for 9 & 5.

— Unpacked BCD it takes 1 byte of memory location.
* Or a register of 8 bits to contain the number.

* In packed BCD, a single byte has two BCD numbers.
— One in the lower 4 bits; One in the upper 4 bits.
* "0101 1001" is packed BCD for 59.

— As it takes only 1 byte of memory to store the packed
BCD operands, it is twice as efficient in storing data.

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII numbers

* In ASCII keyboards, when key "0" is activated
"011 0000" (30H) is provided to the computer.

— 31H (011 0001) is provided for key "1", etc.

Key ASCIT (hex) Binary BCD (unpacked)
0 30 011 0000 Qo000 0000
1! 31 011 0001 0000 0001
2 32 011 Q01¢ 0000 0010
3 33 011 0011 0000 0011
4 34 011 0100 0000 0100
5 35 011 0101 0000 0101
6 36 011 0110 0000 0110
7 37 011 0111 0000 0111
8 38 011 1000 0000 1000
9 39 611 1001 0000 1001

* To convert ASCII data to BCD, removed the tagged
"011" in the higher 4 bits of the ASCII.

— Each ASCII number is ANDed with "0000 1111, (OFH)

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII to unpacked BCD conversion

* Programs 3-5a, 3-5b, and 3-5c show three methods
for converting the 10 ASCII digits to unpacked BCD.

— Using this data segment:

ASC DB 19562481273 " The data is defined as DB, a
ORG 0010H P g . . '
oNeACK DB 10 DUR() byte deflm.tlon dlrec.tlve, and is
accessed in word-sized chunks.

MOV X, 5
MOV BX,QFFSET ASC ;BX points to ASCII data
MOV DI,OFFSET UNPACK ;DI points to unpacked BCD data
AGAIN: MOW A¥X,[BX] rmove next 2 ASCII numbers to AX
AND AX, OFOFH ; remove ASCII 3s
MOW [DI] ,AX ;store unpacked BCD
ADD BT, ;point to next unpacked BCD data
ADD BX, 2 ;point to next ASCII data
LOOP AGAIN
Program 3-5a

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII to unpacked BCD conversion

* Programs 3-5a, 3-5b, and 3-5c show three methods
for converting the 10 ASCII digits to unpacked BCD.

— Using this data segment:

ASC DB '9562481273" Using the PTR directive as
ORG 0010H
oNeACK DB 10 DUR() shown, makes the code more
readable for programmers.
MOW CXpD ;CX 1s loop counter
MOV BX,OFFSET ASC ;BX points to ASCII data
MOW DI,OFFSET UNPACK ;DI points to unpacked BCD data
AGAIN: MOV A¥X,WORD PTR [BX] ymove next 2 ASCII numbers to AX
AND AX, OFOFH ;remove ASCII 3s
MOW WORD PTR [DI] ,AX ;store unpacked BCD
ADD BT, 2 ;point to next unpacked BCD data
ADD BX, 2 ;point to next ASCII data
LOOP AGAIN
Program 3-5b

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII to unpacked BCD conversion

* Programs 3-5a, 3-5b, and 3-5¢ show three methods
for converting the 10 ASCII digits to unpacked BCD.

— Using this data segment:

ASC DB '9562481273" 3-5C uses based addressing
ORG 0010H . .
+
oNpACK DB 10 DUB () mode since BX+ASC is used
as a pointer.
MOV CX,10 :1load the counter
SUB BX, BX ;clear BX
AGAIN: MOV AL, ASC[BX] ;move to AL content of mem [BX+ASC]
AND AL, OFH ;mask the upper nibble
MOV UNEACK[BX] , AL ;move to mem [BX+UNPACK] the AL
INC BX ;point to next byte
LOOP AGAIN ;loop until it is finished
Program 3-5c
i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII/BCD conversions

» To convert ASCII to packed BCD, it is converted to
unpacked BCD (eliminating the 3), then combined
to make packed BCD.

* To convert packed BCD to ASCII, it must first be
converted to unpacked.

— The unpacked BCD is tagged with 011 0000 (30H).

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

ASCII to packed BCD conversion

 For4 & 7, the keyboard gives 34 & 37, respectively.
— The goal is to produce packed BCD 47H or “0100 0111~.

Key ASCII Unpacked BCD Packed BCD

4 34 00000100
f: a7 00000111 100111l or 47H
ORG 0010H
VAL ASC DB o
VAL BCD DB i
;reminder: DB will put 34 in 0010H location and 37 in 001l1H
MOV AX,WORD PTR VAL ASC ; AH=37, AL=34
AND AX, QOFOFH ;mask 3 to get unpacked BCD
XCHG AH,AL ;swap AH and AL.
MOV CL, 4 ;CL=04 to shift 4 times
SHL AH, CL ;shift left AH to get AH=40H
OR AL, AH ;OR them to get packed BCD
MOV VAL BCD, AL ;save the result
i The x86 PC
BTLSISDN (ssembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

packed BCD to ASCII conversion
« Converting from packed BCD to ASCII.

Packed BCD Unpacked BCD ASCII
29H 02H & 09H 32H & 39H
0010 1001 0000 0010 & 00OCO 1001 011 0010 & 011 1001

VALl BCD DB 29H
VAL3-ASC DW 2

MOV AL,VAL1 BCD

MOV AH, AL ;copy AL to AH. now AH=29,AL=29H
AND AX,OFO00FH ;mask 9 from AH and 2 from AL
MOV CL, 4 ;CL=04 for shift

SHR AH,CL ;shift right AH to get unpacked BCD
OR AX,3030H ;combine with 30 to get ASCII
XCHG AH,AL ; swap for ASCII storage convention

MOV VAL3 ASC,AX ;store the ASCII

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

Ex. ASCII CODE 0-9 = 30h — 39h
MOV AX, 38H ;(ASCII code for number 8)
ADD AL, 39H ;(ASCII code for number 9)
AAA; used for addition AX has = 0107
ADD AX, 3030H; change answer to ASCII if you needed

The x86 PC

]-‘j_E ARS D_f_\l Assembly Language, Design, and Interfacing

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prent'g?—lall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

BCD addition and subtraction

 After adding packed BCD numbers, the result is no
longer BCD.

b ar 2en — Adding them gives 0011 1111B (3FH). (not BCD)

— The result should have been 17 + 28 =45 (0100 0101).
 To correct, add 6 (0110) to the low digit: 3F + 06 = 45H.

— The same could have happened in the upper digit.

« This problem is so pervasive that the vast majority of
microprocessors have an instruction to deal with it.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

DAA

* DAA (decimal adjust for addition) is provided in
the x86 for correcting the BCD addition problem.

— DAA will add 6 to the lower, or higher nibble if needed
* Otherwise, it will leave the result alone.

DATAL DB 47H
DATAZ DB 25H
DATAZ DB?

MOV AL, DATAL ;AL holds first BCD operand

MOV BL,DATAZ ;BL holds second BCD operand

ADD AL, BL ;BCD additiocn

DAA ;adjust for BCD addition

MOV DATA3, AL ;store result in correct BCD form

After execution, DATA3 will contain 72H.

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

DAA general rules & summary

 (General rules for DAA:

— The source can be an operand of any addressing mode.
* The destination must be AL in order for DAA to work.

— DAA must be used after the addition of BCD operands.
« BCD operands can never have any digit greater than 9.

— DAA works only after an ADD instruction.
* |t will not work after the INC instruction.

 After an ADD or ADC instruction:

— If the lower nibble (4 bits) is greater than 9, or if AF = 1.
» Add 0110 to the lower 4 bits.

— If the upper nibble is greater than 9, or if CF = 1.
* Add 0110 to the upper nibble.

_ The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

DAA summary of action

Use of DAA after adding multibyte packed BCD
numbers.

Two sets of ASCII data have come in from the keyboard. Write and run a program to:
|. Convert from ASCII to packed BCD.
2. Add the multibyte packed BCD and save it.
3. Convert the packed BCD result to ASCII.
TITLE PROG3-6 (EXE) ASCII TO BCD CONVERSION AND ADDITION
PAGE 60,132
.MODE SMALL
.STACK o4
DATA
DATA1l ASC DB *0649147816"
B ORG 010H
DATAZ ASC DB {“07568? 88"’
B ORG 00
DATA3 BCD DE 5 BJ:‘ (?)
B ORG 0028H
DHTP&‘Q_ EBCD DB 5 DUP (?) Prograrr 3-6
RG o -
See the entire program listing on pages 116-117 of your textbook.

e The x86 PC
RS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

PEA
— Pearson Prentice Hall - Upper Saddle River, NJ 07458

DAA Example

Ex. 4 AL contains 25 (packed BCD)
BL contains 56 (packed BCD)

ADD AL, BL
DAA

e The x86 PC
_E ARS U_f_\l Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

P

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentice Hall - Upper Saddle River, NJ 07458

« Write an 8086 program that adds two packed BCD
numbers input from the keyboard and computes and
displays the result on the system video monitor

 Data should be in the form 64+89= The answer 153
should appear in the next line.

0 1 2 3 4 5 6 7
e The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prent'38Hall - Upper Saddle River, NJ 07458

Example Continued

Mov dx, offset bufferaddress Mov cl,4
Mov ah,0a Rol byte ptr [si+3],cl
Mov si,dx Rol byte ptr [si+6],cl
Mov byte ptr [si], 6 Ror word ptr [si+5], cl
Int 21 Ror word ptr [si+2], cl
Mov ah,0eh _
Mov al,0ah Mov al, [si+3]
Int 10 Add al, [si+6]
; BIOS service Oe line feed position cursor DAA
Mov bh,al
Jnc display
sub byte ptr[si+2], 30h Mov al, 1
sub byte ptr[si+3], 30h Call display
sub byte ptr[si+5], 30h Mov al,bh
sub byte ptr[si+6], 30h Call display
Int 20
6 ? 6 4 + 8 9 =
The x86 PC
M Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
By Muh2mmad A3i Mazid4 Janice Gillespie Blazidi add Danny Causey Pearson Prent'gg-lall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION
BCD subtraction and correction

« DAS (decimal adjust for subraction) is provided in
the x86 for correcting the BCD subtraction problem.

— When subtracting packed BCD (single-byte or multibyte)
operands, the DAS instruction is used after SUB or SBB.

« AL must be used as the destination register.

« After a SUB or SBB instruction:
— If the lower nibble is greater than 9, or if AF = 1.
« Subtract 0110 from the lower 4 bits.
— If the upper nibble is greater than 9, or CF = 1.
« Subtract 0110 from the upper nibble.

. The x86 PC
Fj_E ARS U_ﬁ Assembly Language, Design, and Interfacing © 2010, 2003, 2090, 1998 Pearson Higher Education, Inc.
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

3.4: BCD AND ASCII CONVERSION

BCD subtraction and correction

* Due to the widespread use of BCD numbers, a
specific data directive, DT, has been created.

— To represent BCD numbers 0 to 1020 - 1. (twenty 9s)

BUDGET DE 87965141012

EXPENSES DT 31610640392

BALANCE 12 ? sbalance = budget - expenses
MOW CX;10 ;counter=10
MOV BX, 00 rpointer=0
CLC ;clear carry for the lst iteration

BACK: MOVAL,BYTE PTR BUDGET[BX] ;get a byte of the BUDGET
SBB AL,BYTE PTR EXPENSES[BX] ;subtract abyte fromit

DAS rcorrect result for BCD
MOV BYTE PTR BALANCE[BX] ,AL ;save it 1n BALANCE
INC BX ;increment for the next byte

LOOP BACK ;continue untilil CX=0

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prentice Hall - Upper Saddle River, NJ 07458

BCD and ASCII Numbers

« BCD (Binary Coded Decimal)

— Unpacked BCD: One byte per digit

— Packed BCD: 4 bits per digit (more efficient in storing data)
« ASCII to unpacked BCD conversion

— Keyboards, printers, and monitors all use ASCII.

— Digits 0 to 9 are represented by ASCII codes 30 — 39.

« Example. Write an 8086 program that displays the packed BCD number
in register AL on the system video monitor

— The first number to be displayed should be the MS Nibble

— It is found by masking the LS Nibble and then rotating the MS Nibble
into the LSD position

— The result is then converted to ASCII by adding 30h
— The BIOS video service is then called to display this result.

e The x86 PC
]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson Prentz'F?—Iall - Upper Saddle River, NJ 07458

ASCII Numbers Example

MOV BL,AL; save

AND AL,FOH

MOV CL,4

RORAL,CL

ADD AL,30H

MOV AH,0EH

INT 10H ;display single character

MOV AL,BL; use again

AND AL,0FH
ADD AL,30H
INT 10H
INT 20H : RETURN TO DOS
> > g c
_ The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prenﬁ;sHall - Upper Saddle River, NJ 07458

80x86 is equipped with special instructions to handle string
operations

String: A series of data words (or bytes) that reside in consecutive
memory locations

Operations: move, scan, compare

String Instruction:

Byte transfer, Sl or DI increment or decrement by 1
Word transfer, Sl or DI increment or decrement by 2
DWord transfer, Sl or DI increment or decrement by 4

_ The x86 PC
F:_E ARS U_I‘_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrentZFg‘_Hall - Upper Saddle River, NJ 07458

String Instructions - D Flag

The Direction Flag: Selects the auto increment D=0 or
the auto decrement D=1 operation for the DI and Sl registers during string
operations. D is used only with strings

Mnemonic | Meaning Format Operation | Flags Affected

CLD Clear DF CLD (DF)+~0 DF

STD Set DF STD (DF) + 1 DF

CLD - Clears the D flag/ STD = Sets the D flag

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrentZF5Hall - Upper Saddle River, NJ 07458

Mnemaonic Meaning Formal Operation Flags Affected
MOVS Move string MOVSB/MOVSW | ({ES)0 + (DIJ) « ({DS)0 + (51)) Mune
(§1) o= (SI} = 1 or 2
(DI} + (DI) = 1 or 2
CMPS Compare string | CMPSB/CMPSW Sei flags as per CF. PF. AF, ZF, 5F, OF
(DS + (S1)) ~ ((ESH0 + (DI))
(51) o (51} = 1 or 2
(D1} «— (D1} = 1 o 2
SCAS Scan siring SCASBISCASW Set Mags as per CF, PF, AF, ZF, 5F, OF
(AL or AX) = ((ES)Y + (1))
(DI} «— (D) = 1or2
LODS Load string LODSB/ILODSW | (AL or AX) « ((DS)0 + (51)) None
(S1) —(SI) = 1 or 2
STOS Store siring STOSB/STOSW {(ES)0 + (D1)) + (AL or AX) = 1er2 | None
(EH]) = (D) = 1 o 2
MOV AX,DATASEGADDR
MOV DS,AX
MOV ES,AX
MOV SILLBLK1ADDR
MOV DI, BLK2ADDR
MOV CX,N
CLD
NXTPT: MOvVSB
LooeP NXTPT
HLT
The x86 PC

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.
Pearson PrentZFGHall - Upper Saddle River, NJ 07458

Repeat String

REP

Basic string operations must be repeated in order to process arrays of data; this is done

by inserting a repeat prefix.

Prefix Used with: Meaning
REP MOVS Repceat while not end of string
STOS CX+#0
REPE/REPZ CMPS Repcat while not end of string
SCAS and strings are equal
CX #0and ZF = |
REPNE/REPNZ CMPS Repeat while not end of string
SCAS and strings are not equal
CX#0and ZF =0

Figure 6-36 Prefixes for use with
the basic string operations.

The x86 PC

]:j_E ARS U_H Assembly Language, Design, and Interfacing
By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey

© 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

Pearson PrentzFVHall - Upper Saddle River, NJ 07458

Example. Find and replace

- Write a program that scans the name “Mr.Gohns” and replaces the =
“G” with the letter “J”. search.asm
Datal db 'Mr.Gones',6 'S$S)

.code

mov es,ds
cld ;set auto increment bit D=0
mov di, offset datal
mov cxX,09; number of chars to be scanned
mov al,'G'; char to be compared against
repne SCASB; start scan AL =? ES[DI]
jne Over; 1f 7z=0
dec di; z=1
mov byte ptr[di], 'J'
Over: mov ah,09
mov dx,offset datal

int 21h; display the resulting String Eﬁ
Search.exe
e The x86 PC
F_E ARS U_N Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrentZFgHall - Upper Saddle River, NJ 07458

Strings into Video Buffer

Fill the Video Screen with a value

Clear.exe

I
|
I
MOV AX, 0B80OH i
MOV ES, AX |
MOV DI, 0 |
gMov CX,2000H i
MOV AL, 20h :

I

e The x86 PC
Fj_E ARS U_f_\l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson Prengip@ffall - Upper Saddle River, NJ 07458

Example. Display the ROM BIOS Date

« Write an 8086 program that searches the BIOS ROM
for its creation date and displays that date on the
monitor.

 If a date cannot be found display the message “date not
found”

« Typically the BIOS ROM date is stored in the form
xX/xx/xx beginning at system address FOOO:FFF5

« Each character is in ASCII form and the entire string is
terminated with the null character (00)

« Add a ‘$’ character to the end of the string and make it
ready for DOS function 09, INT 21

_ The x86 PC
Fj_E ARS U_f_‘l Assembly Language, Design, and Interfacing © 2010, 2003, 2000, 1998 Pearson Higher Education, Inc.

By Muhammad Ali Mazidi, Janice Gillespie Mazidi and Danny Causey Pearson PrenifﬁoHall - Upper Saddle River, NJ 07458

